Benchmarking on Raw Trajectories
The results shown in the tables are the average AUROC values of 10 runs on the trajectories generated by a certain type of graphs. The column headers represent the number of nodes in the graph, e.g., “n15” denotes the graph with 15 nodes.
a) AUROC values (in %) of investigated structural inference methods on BN trajectories.
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
96.12 ± 0.40 |
98.08 ± 0.22 |
98.83 ± 0.09 |
99.43 ± 0.01 |
TIGRESS |
- |
- |
- |
- |
93.14 ± 0.67 |
96.44 ± 0.76 |
97.72 ± 0.26 |
98.72 ± 0.04 |
ARACNe |
- |
- |
- |
- |
94.10 ± 0.66 |
96.45 ± 0.31 |
97.78 ± 0.19 |
98.83 ± 0.03 |
CLR |
- |
- |
- |
- |
95.39 ± 0.48 |
96.72 ± 0.56 |
97.73 ± 0.19 |
98.84 ± 0.03 |
PIDC |
- |
- |
- |
- |
88.45 ± 0.61 |
93.16 ± 0.69 |
94.28 ± 0.26 |
96.17 ± 0.12 |
Scribe |
- |
- |
- |
- |
48.71 ± 1.37 |
62.41 ± 1.64 |
68.79 ± 2.53 |
69.36 ± 1.50 |
dynGENIE3 |
- |
- |
- |
- |
90.70 ± 2.97 |
99.87 ± 0.01 |
99.89 ± 0.00 |
99.97 ± 0.00 |
XGBGRN |
- |
- |
- |
- |
100.00 ± 0.00 |
100.00 ± 0.00 |
100.00 ± 0.00 |
100.00 ± 0.00 |
NRI |
99.75 ± 0.00 |
99.57 ± 0.00 |
99.12 ± 0.01 |
97.54 ± 0.02 |
99.79 ± 0.00 |
98.73 ± 0.00 |
76.08 ± 0.01 |
75.26 ± 0.01 |
ACD |
99.75 ± 0.00 |
99.60 ± 0.00 |
98.96 ± 0.01 |
99.57 ± 0.01 |
99.87 ± 0.00 |
98.95 ± 0.00 |
80.96 ± 0.01 |
79.88 ± 0.01 |
MPM |
99.98 ± 0.00 |
99.95 ± 0.00 |
99.97 ± 0.01 |
98.69 ± 0.01 |
99.95 ± 0.00 |
99.56 ± 0.00 |
98.60 ± 0.01 |
79.92 ± 0.01 |
iSIDG |
99.97 ± 0.00 |
99.94 ± 0.00 |
99.95 ± 0.01 |
98.92 ± 0.01 |
99.91 ± 0.00 |
99.62 ± 0.00 |
98.59 ± 0.01 |
76.41 ± 0.01 |
RCSI |
99.81 ± 0.01 |
99.46 ± 0.01 |
99.50 ± 0.01 |
98.04 ± 0.01 |
99.72 ± 0.01 |
99.43 ± 0.00 |
98.60 ± 0.01 |
80.01 ± 0.01 |
b) AUROC values (in %) of investigated structural inference methods on CRNA trajectories
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
91.37 ± 1.10 |
90.35 ± 0.39 |
90.26 ± 0.54 |
89.16 ± 0.55 |
TIGRESS |
- |
- |
- |
- |
84.40 ± 2.84 |
74.88 ± 0.64 |
69.41 ± 0.64 |
60.10 ± 0.46 |
ARACNe |
- |
- |
- |
- |
78.11 ± 1.50 |
77.93 ± 1.00 |
77.55 ± 0.80 |
75.74 ± 0.89 |
CLR |
- |
- |
- |
- |
86.01 ± 1.98 |
86.59 ± 1.06 |
84.24 ± 0.76 |
81.14 ± 1.24 |
PIDC |
- |
- |
- |
- |
85.70 ± 3.35 |
75.38 ± 0.42 |
70.81 ± 1.99 |
82.74 ± 0.88 |
Scribe |
- |
- |
- |
- |
55.19 ± 3.80 |
52.19 ± 0.22 |
50.78 ± 0.25 |
50.94 ± 0.74 |
dynGENIE3 |
- |
- |
- |
- |
56.92 ± 6.83 |
50.32 ± 1.36 |
50.12 ± 0.84 |
50.35 ± 0.60 |
XGBGRN |
- |
- |
- |
- |
99.60 ± 0.30 |
99.58 ± 0.13 |
97.40 ± 0.52 |
51.48 ± 0.22 |
NRI |
83.91 ± 0.03 |
72.81 ± 0.05 |
70.73 ± 0.02 |
65.32 ± 0.02 |
49.47 ± 0.02 |
49.03 ± 0.03 |
50.06 ± 0.02 |
50.65 ± 0.02 |
ACD |
85.90 ± 0.04 |
75.41 ± 0.01 |
69.97 ± 0.01 |
64.51 ± 0.02 |
48.26 ± 0.02 |
48.40 ± 0.03 |
51.42 ± 0.01 |
50.21 ± 0.02 |
MPM |
85.75 ± 0.03 |
73.71 ± 0.01 |
68.25 ± 0.02 |
64.87 ± 0.02 |
49.72 ± 0.01 |
51.16 ± 0.04 |
50.06 ± 0.01 |
50.56 ± 0.02 |
iSIDG |
87.01 ± 0.02 |
78.21 ± 0.05 |
70.72 ± 0.01 |
62.31 ± 0.02 |
51.04 ± 0.01 |
50.24 ± 0.04 |
51.26 ± 0.01 |
50.87 ± 0.02 |
RCSI |
87.51 ± 0.02 |
78.11 ± 0.05 |
69.82 ± 0.02 |
64.80 ± 0.03 |
51.15 ± 0.02 |
50.81 ± 0.04 |
51.10 ± 0.02 |
50.00 ± 0.02 |
c) AUROC values (in %) of investigated structural inference methods on FW trajectories.
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
78.21 ± 1.57 |
73.63 ± 1.75 |
72.76 ± 1.04 |
71.72 ± 0.15 |
TIGRESS |
- |
- |
- |
- |
64.15 ± 1.55 |
58.00 ± 0.61 |
57.92 ± 0.84 |
53.97 ± 0.44 |
ARACNe |
- |
- |
- |
- |
66.07 ± 4.26 |
65.40 ± 3.82 |
68.39 ± 0.24 |
53.18 ± 2.03 |
CLR |
- |
- |
- |
- |
79.69 ± 3.33 |
74.20 ± 1.57 |
73.94 ± 1.01 |
44.50 ± 2.24 |
PIDC |
- |
- |
- |
- |
78.82 ± 3.75 |
50.00 ± 0.00 |
50.00 ± 0.00 |
64.72 ± 1.39 |
Scribe |
- |
- |
- |
- |
52.96 ± 2.66 |
54.25 ± 1.16 |
51.02 ± 1.59 |
51.73 ± 0.92 |
dynGENIE3 |
- |
- |
- |
- |
47.98 ± 2.67 |
49.89 ± 1.29 |
49.40 ± 0.58 |
51.26 ± 1.07 |
XGBGRN |
- |
- |
- |
- |
84.84 ± 1.90 |
73.00 ± 4.00 |
52.36 ± 0.35 |
49.11 ± 0.77 |
NRI |
81.80 ± 0.01 |
76.75 ± 0.02 |
74.15 ± 0.01 |
71.57 ± 0.01 |
49.30 ± 0.03 |
48.50 ± 0.03 |
50.75 ± 0.02 |
47.56 ± 0.03 |
ACD |
81.89 ± 0.01 |
76.38 ± 0.02 |
73.50 ± 0.01 |
71.12 ± 0.01 |
50.74 ± 0.06 |
50.19 ± 0.01 |
50.49 ± 0.03 |
49.82 ± 0.01 |
MPM |
81.87 ± 0.02 |
75.97 ± 0.01 |
73.59 ± 0.01 |
71.52 ± 0.01 |
53.01 ± 0.08 |
50.66 ± 0.01 |
51.22 ± 0.03 |
53.01 ± 0.03 |
iSIDG |
81.95 ± 0.01 |
76.75 ± 0.01 |
74.38 ± 0.02 |
72.21 ± 0.02 |
53.36 ± 0.03 |
50.78 ± 0.03 |
50.46 ± 0.03 |
51.07 ± 0.01 |
RCSI |
81.80 ± 0.01 |
75.62 ± 0.02 |
74.51 ± 0.02 |
72.40 ± 0.02 |
53.70 ± 0.05 |
50.28 ± 0.03 |
51.61 ± 0.03 |
53.82 ± 0.02 |
d) AUROC values (in %) of investigated structural inference methods on GCN trajectories.
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
96.72 ± 1.64 |
98.48 ± 0.35 |
98.55 ± 0.22 |
98.20 ± 0.42 |
TIGRESS |
- |
- |
- |
- |
91.72 ± 4.28 |
87.90 ± 1.44 |
80.44 ± 1.78 |
78.12 ± 0.15 |
ARACNe |
- |
- |
- |
- |
95.24 ± 0.00 |
91.15 ± 2.18 |
92.75 ± 1.94 |
94.04 ± 0.71 |
CLR |
- |
- |
- |
- |
94.57 ± 2.14 |
97.48 ± 0.54 |
97.25 ± 0.76 |
96.40 ± 0.21 |
PIDC |
- |
- |
- |
- |
92.75 ± 3.92 |
91.98 ± 0.90 |
92.01 ± 1.23 |
94.17 ± 1.25 |
Scribe |
- |
- |
- |
- |
50.47 ± 2.55 |
49.31 ± 1.72 |
48.17 ± 2.80 |
49.51 ± 0.77 |
dynGENIE3 |
- |
- |
- |
- |
46.70 ± 5.05 |
47.86 ± 4.04 |
50.46 ± 1.93 |
49.58 ± 1.37 |
XGBGRN |
- |
- |
- |
- |
93.28 ± 2.47 |
96.71 ± 0.51 |
96.74 ± 0.62 |
94.95 ± 0.33 |
NRI |
97.42 ± 0.00 |
93.38 ± 0.01 |
89.54 ± 0.02 |
83.78 ± 0.01 |
43.46 ± 0.02 |
52.74 ± 0.06 |
50.98 ± 0.02 |
50.34 ± 0.02 |
ACD |
97.95 ± 0.01 |
92.62 ± 0.01 |
89.96 ± 0.03 |
90.73 ± 0.02 |
42.23 ± 0.03 |
46.12 ± 0.04 |
47.66 ± 0.03 |
49.87 ± 0.04 |
MPM |
98.82 ± 0.01 |
92.68 ± 0.02 |
85.81 ± 0.03 |
84.98 ± 0.02 |
52.59 ± 0.03 |
66.65 ± 0.07 |
63.01 ± 0.07 |
53.07 ± 0.06 |
iSIDG |
98.93 ± 0.01 |
93.16 ± 0.01 |
89.53 ± 0.01 |
87.60 ± 0.01 |
56.41 ± 0.06 |
52.07 ± 0.03 |
52.96 ± 0.03 |
50.78 ± 0.03 |
RCSI |
97.66 ± 0.01 |
93.92 ± 0.02 |
88.69 ± 0.02 |
88.01 ± 0.02 |
53.31 ± 0.05 |
59.23 ± 0.03 |
54.30 ± 0.02 |
50.44 ± 0.02 |
e) AUROC values (in %) of investigated structural inference methods on GRN trajectories.
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
86.12 ± 0.98 |
88.72 ± 1.33 |
89.83 ± 0.89 |
89.61 ± 0.93 |
TIGRESS |
- |
- |
- |
- |
79.09 ± 1.07 |
85.16 ± 2.26 |
85.85 ± 1.96 |
87.41 ± 2.73 |
ARACNe |
- |
- |
- |
- |
70.46 ± 3.52 |
70.05 ± 2.10 |
70.73 ± 1.90 |
69.48 ± 2.10 |
CLR |
- |
- |
- |
- |
78.25 ± 0.49 |
76.48 ± 1.91 |
75.67 ± 1.29 |
73.09 ± 2.10 |
PIDC |
- |
- |
- |
- |
57.49 ± 3.59 |
63.51 ± 2.69 |
65.95 ± 1.41 |
63.85 ± 2.00 |
Scribe |
- |
- |
- |
- |
44.89 ± 7.52 |
47.79 ± 3.50 |
45.50 ± 3.03 |
46.15 ± 2.41 |
dynGENIE3 |
- |
- |
- |
- |
64.23 ± 4.75 |
59.69 ± 6.09 |
54.38 ± 3.18 |
58.53 ± 3.94 |
XGBGRN |
- |
- |
- |
- |
80.08 ± 3.81 |
83.77 ± 0.49 |
84.51 ± 0.43 |
83.47 ± 1.31 |
NRI |
91.65 ± 0.01 |
90.45 ± 0.01 |
90.35 ± 0.02 |
88.14 ± 0.02 |
78.08 ± 0.03 |
57.01 ± 0.05 |
55.71 ± 0.05 |
58.33 ± 0.04 |
ACD |
91.10 ± 0.00 |
88.21 ± 0.01 |
86.78 ± 0.01 |
90.07 ± 0.03 |
80.18 ± 0.04 |
69.78 ± 0.07 |
62.65 ± 0.02 |
53.99 ± 0.03 |
MPM |
94.02 ± 0.01 |
93.25 ± 0.02 |
84.60 ± 0.02 |
85.30 ± 0.02 |
70.46 ± 0.04 |
57.36 ± 0.03 |
72.25 ± 0.05 |
66.74 ± 0.03 |
iSIDG |
92.91 ± 0.01 |
90.06 ± 0.01 |
90.15 ± 0.01 |
87.94 ± 0.04 |
71.11 ± 0.04 |
56.25 ± 0.02 |
57.15 ± 0.02 |
62.13 ± 0.02 |
RCSI |
93.88 ± 0.02 |
93.01 ± 0.02 |
90.35 ± 0.01 |
89.90 ± 0.03 |
77.45 ± 0.03 |
65.77 ± 0.03 |
59.93 ± 0.02 |
60.15 ± 0.03 |
f) AUROC values (in %) of investigated structural inference methods on IN trajectories.
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
94.14 ± 0.54 |
96.13 ± 1.65 |
97.64 ± 0.11 |
97.61 ± 0.01 |
TIGRESS |
- |
- |
- |
- |
94.39 ± 1.34 |
91.79 ± 5.82 |
86.31 ± 1.42 |
78.25 ± 0.52 |
ARACNe |
- |
- |
- |
- |
85.82 ± 3.90 |
87.77 ± 5.36 |
83.05 ± 2.84 |
86.14 ± 0.54 |
CLR |
- |
- |
- |
- |
87.17 ± 0.26 |
92.45 ± 2.50 |
89.58 ± 3.93 |
92.82 ± 1.03 |
PIDC |
- |
- |
- |
- |
81.90 ± 1.92 |
85.16 ± 1.59 |
84.84 ± 2.89 |
89.35 ± 0.48 |
Scribe |
- |
- |
- |
- |
54.29 ± 4.17 |
50.81 ± 1.34 |
50.68 ± 3.52 |
50.76 ± 0.53 |
dynGENIE3 |
- |
- |
- |
- |
58.18 ± 4.97 |
70.18 ± 15.42 |
68.08 ± 8.25 |
50.22 ± 1.78 |
XGBGRN |
- |
- |
- |
- |
99.00 ± 0.85 |
99.69 ± 0.07 |
99.90 ± 0.04 |
99.91 ± 0.05 |
NRI |
93.09 ± 0.01 |
90.54 ± 0.05 |
88.10 ± 0.03 |
82.51 ± 0.03 |
60.47 ± 0.04 |
61.78 ± 0.06 |
56.45 ± 0.04 |
53.96 ± 0.04 |
ACD |
93.33 ± 0.02 |
89.12 ± 0.05 |
87.69 ± 0.04 |
81.37 ± 0.02 |
68.39 ± 0.06 |
55.11 ± 0.08 |
53.88 ± 0.02 |
53.04 ± 0.05 |
MPM |
95.61 ± 0.02 |
89.59 ± 0.05 |
86.47 ± 0.03 |
83.45 ± 0.03 |
63.83 ± 0.03 |
64.70 ± 0.09 |
54.18 ± 0.03 |
54.37 ± 0.04 |
iSIDG |
95.37 ± 0.02 |
90.72 ± 0.05 |
87.79 ± 0.02 |
84.00 ± 0.02 |
62.18 ± 0.03 |
61.91 ± 0.01 |
56.50 ± 0.02 |
53.85 ± 0.02 |
RCSI |
96.70 ± 0.01 |
93.46 ± 0.02 |
88.02 ± 0.02 |
83.96 ± 0.01 |
62.08 ± 0.04 |
60.05 ± 0.02 |
55.65 ± 0.03 |
52.84 ± 0.02 |
g) AUROC values (in %) of investigated structural inference methods on LN trajectories
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
99.49 ± 0.56 |
95.04 ± 5.20 |
86.75 ± 1.66 |
79.32 ± 4.32 |
TIGRESS |
- |
- |
- |
- |
84.15 ± 1.16 |
87.38 ± 3.32 |
92.22 ± 0.42 |
93.97 ± 1.96 |
ARACNe |
- |
- |
- |
- |
92.33 ± 4.84 |
80.36 ± 5.67 |
71.17 ± 0.48 |
62.82 ± 8.36 |
CLR |
- |
- |
- |
- |
97.35 ± 3.17 |
96.56 ± 4.87 |
91.04 ± 2.35 |
95.04 ± 0.53 |
PIDC |
- |
- |
- |
- |
97.53 ± 1.01 |
82.03 ± 7.28 |
88.58 ± 1.69 |
94.18 ± 2.28 |
Scribe |
- |
- |
- |
- |
54.22 ± 3.98 |
56.16 ± 3.88 |
52.12 ± 2.49 |
52.55 ± 1.62 |
dynGENIE3 |
- |
- |
- |
- |
51.32 ± 5.21 |
50.12 ± 2.42 |
50.49 ± 1.22 |
67.32 ± 14.23 |
XGBGRN |
- |
- |
- |
- |
97.21 ± 1.13 |
96.95 ± 2.10 |
96.90 ± 0.83 |
97.99 ± 0.93 |
NRI |
97.01 ± 0.02 |
94.94 ± 0.00 |
87.10 ± 0.01 |
82.80 ± 0.01 |
56.00 ± 0.04 |
53.94 ± 0.02 |
54.36 ± 0.02 |
51.75 ± 0.03 |
ACD |
96.99 ± 0.02 |
95.79 ± 0.01 |
87.58 ± 0.02 |
83.92 ± 0.02 |
61.94 ± 0.03 |
61.56 ± 0.04 |
53.36 ± 0.02 |
50.19 ± 0.02 |
MPM |
97.92 ± 0.01 |
95.53 ± 0.02 |
86.92 ± 0.01 |
84.22 ± 0.03 |
52.18 ± 0.02 |
62.08 ± 0.05 |
53.44 ± 0.01 |
50.42 ± 0.03 |
iSIDG |
97.38 ± 0.02 |
94.70 ± 0.02 |
87.44 ± 0.02 |
83.15 ± 0.02 |
59.19 ± 0.05 |
56.18 ± 0.03 |
55.73 ± 0.03 |
52.30 ± 0.02 |
RCSI |
97.30 ± 0.02 |
94.42 ± 0.02 |
88.02 ± 0.02 |
84.26 ± 0.02 |
60.28 ± 0.03 |
60.15 ± 0.02 |
57.56 ± 0.03 |
53.48 ± 0.02 |
h) AUROC values (in %) of investigated structural inference methods on MMO trajectories
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
96.42 ± 0.02 |
98.28 ± 0.00 |
98.98 ± 0.00 |
99.49 ± 0.00 |
TIGRESS |
- |
- |
- |
- |
99.88 ± 0.01 |
99.98 ± 0.00 |
100.00 ± 0.00 |
100.00 ± 0.00 |
ARACNe |
- |
- |
- |
- |
89.76 ± 0.16 |
96.60 ± 1.51 |
97.09 ± 1.07 |
98.11 ± 0.79 |
CLR |
- |
- |
- |
- |
96.43 ± 0.00 |
98.28 ± 0.00 |
98.98 ± 0.00 |
98.81 ± 0.37 |
PIDC |
- |
- |
- |
- |
44.74 ± 4.70 |
70.03 ± 7.65 |
77.24 ± 1.02 |
75.01 ± 0.29 |
Scribe |
- |
- |
- |
- |
69.85 ± 12.21 |
38.03 ± 25.86 |
20.70 ± 10.19 |
23.88 ± 15.76 |
dynGENIE3 |
- |
- |
- |
- |
16.90 ± 2.38 |
23.49 ± 5.12 |
23.31 ± 4.03 |
45.89 ± 20.23 |
XGBGRN |
- |
- |
- |
- |
59.77 ± 2.14 |
81.64 ± 6.68 |
72.13 ± 11.09 |
63.83 ± 6.71 |
NRI |
99.62 ± 0.00 |
84.96 ± 0.02 |
77.66 ± 0.01 |
78.04 ± 0.02 |
68.34 ± 0.03 |
66.21 ± 0.06 |
57.84 ± 0.03 |
56.10 ± 0.01 |
ACD |
99.68 ± 0.00 |
93.89 ± 0.01 |
85.53 ± 0.02 |
85.46 ± 0.01 |
71.88 ± 0.03 |
59.46 ± 0.06 |
64.14 ± 0.03 |
58.05 ± 0.02 |
MPM |
99.83 ± 0.00 |
88.32 ± 0.01 |
87.02 ± 0.03 |
86.75 ± 0.02 |
79.34 ± 0.04 |
65.48 ± 0.07 |
54.78 ± 0.04 |
57.06 ± 0.02 |
iSIDG |
99.84 ± 0.00 |
89.77 ± 0.01 |
87.47 ± 0.02 |
85.47 ± 0.01 |
74.58 ± 0.03 |
64.71 ± 0.06 |
56.07 ± 0.04 |
58.80 ± 0.01 |
RCSI |
99.70 ± 0.01 |
92.73 ± 0.02 |
88.05 ± 0.02 |
85.49 ± 0.02 |
73.61 ± 0.04 |
66.08 ± 0.02 |
57.90 ± 0.03 |
58.74 ± 0.02 |
i) AUROC values (in %) of investigated structural inference methods on RNLO trajectories
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
96.36 ± 0.10 |
98.28 ± 0.00 |
98.95 ± 0.04 |
99.25 ± 0.38 |
TIGRESS |
- |
- |
- |
- |
99.82 ± 0.06 |
99.98 ± 0.00 |
99.99 ± 0.00 |
99.99 ± 0.01 |
ARACNe |
- |
- |
- |
- |
93.47 ± 2.99 |
95.67 ± 1.61 |
97.02 ± 0.86 |
98.03 ± 0.43 |
CLR |
- |
- |
- |
- |
96.35 ± 0.12 |
98.28 ± 0.00 |
98.72 ± 0.31 |
98.62 ± 0.29 |
PIDC |
- |
- |
- |
- |
56.18 ± 6.51 |
72.67 ± 10.76 |
74.36 ± 6.83 |
71.95 ± 2.31 |
Scribe |
- |
- |
- |
- |
38.49 ± 1.57 |
47.15 ± 18.16 |
46.52 ± 26.84 |
20.23 ± 13.56 |
dynGENIE3 |
- |
- |
- |
- |
15.96 ± 2.97 |
21.37 ± 8.84 |
27.57 ± 7.69 |
56.44 ± 21.63 |
XGBGRN |
- |
- |
- |
- |
83.55 ± 8.24 |
81.05 ± 5.42 |
81.82 ± 5.07 |
67.30 ± 12.31 |
NRI |
95.54 ± 0.02 |
72.53 ± 0.08 |
72.72 ± 0.03 |
75.07 ± 0.02 |
69.43 ± 0.04 |
67.70 ± 0.08 |
60.55 ± 0.03 |
62.42 ± 0.02 |
ACD |
96.20 ± 0.02 |
93.44 ± 0.03 |
75.83 ± 0.02 |
79.14 ± 0.02 |
57.32 ± 0.05 |
53.75 ± 0.01 |
61.68 ± 0.05 |
65.45 ± 0.03 |
MPM |
97.40 ± 0.01 |
83.70 ± 0.06 |
78.50 ± 0.02 |
79.36 ± 0.02 |
72.62 ± 0.03 |
62.34 ± 0.01 |
56.90 ± 0.05 |
60.05 ± 0.02 |
iSIDG |
97.45 ± 0.01 |
81.60 ± 0.05 |
78.51 ± 0.03 |
79.08 ± 0.03 |
64.79 ± 0.05 |
57.10 ± 0.02 |
64.50 ± 0.05 |
66.01 ± 0.02 |
RCSI |
97.30 ± 0.01 |
83.05 ± 0.03 |
80.43 ± 0.02 |
79.04 ± 0.02 |
69.92 ± 0.04 |
59.42 ± 0.03 |
60.99 ± 0.04 |
60.24 ± 0.02 |
j) AUROC values (in %) of investigated structural inference methods on SN trajectories
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
93.77 ± 0.59 |
94.17 ± 0.28 |
94.74 ± 0.44 |
94.37 ± 0.05 |
TIGRESS |
- |
- |
- |
- |
90.20 ± 1.52 |
82.82 ± 0.30 |
78.22 ± 1.92 |
67.98 ± 0.57 |
ARACNe |
- |
- |
- |
- |
80.80 ± 3.58 |
78.78 ± 3.00 |
80.42 ± 1.00 |
81.49 ± 0.32 |
CLR |
- |
- |
- |
- |
85.08 ± 0.54 |
87.70 ± 1.11 |
89.81 ± 0.74 |
88.24 ± 0.60 |
PIDC |
- |
- |
- |
- |
83.96 ± 2.44 |
84.29 ± 1.00 |
84.66 ± 0.70 |
91.76 ± 0.25 |
Scribe |
- |
- |
- |
- |
56.52 ± 2.94 |
51.30 ± 0.50 |
50.38 ± 0.50 |
50.74 ± 1.01 |
dynGENIE3 |
- |
- |
- |
- |
62.48 ± 5.44 |
55.74 ± 3.23 |
50.00 ± 1.70 |
50.20 ± 0.77 |
XGBGRN |
- |
- |
- |
- |
99.83 ± 0.21 |
99.88 ± 0.07 |
99.74 ± 0.12 |
98.81 ± 0.12 |
NRI |
93.26 ± 0.01 |
79.96 ± 0.02 |
80.40 ± 0.02 |
71.84 ± 0.01 |
58.41 ± 0.04 |
51.43 ± 0.01 |
49.57 ± 0.03 |
50.16 ± 0.03 |
ACD |
93.47 ± 0.01 |
81.17 ± 0.01 |
79.63 ± 0.02 |
68.76 ± 0.02 |
65.24 ± 0.05 |
52.96 ± 0.03 |
49.28 ± 0.02 |
50.76 ± 0.01 |
MPM |
92.68 ± 0.00 |
79.32 ± 0.01 |
75.90 ± 0.01 |
69.36 ± 0.03 |
67.42 ± 0.02 |
50.87 ± 0.01 |
53.12 ± 0.03 |
50.08 ± 0.02 |
iSIDG |
93.51 ± 0.00 |
81.38 ± 0.01 |
80.80 ± 0.02 |
69.25 ± 0.01 |
66.14 ± 0.04 |
53.79 ± 0.03 |
54.83 ± 0.01 |
51.72 ± 0.02 |
RCSI |
94.13 ± 0.02 |
82.66 ± 0.01 |
81.21 ± 0.01 |
73.42 ± 0.02 |
67.58 ± 0.03 |
55.84 ± 0.02 |
55.04 ± 0.02 |
53.24 ± 0.03 |
k) AUROC values (in %) of investigated structural inference methods on VN trajectories
Method |
Springs |
NetSims |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
- |
- |
- |
- |
96.68 ± 0.01 |
98.33 ± 0.01 |
99.00 ± 0.00 |
99.50 ± 0.00 |
TIGRESS |
- |
- |
- |
- |
99.28 ± 0.18 |
99.41 ± 0.15 |
99.62 ± 0.09 |
99.84 ± 0.02 |
ARACNe |
- |
- |
- |
- |
96.66 ± 0.03 |
97.85 ± 0.09 |
98.54 ± 0.01 |
99.08 ± 0.00 |
CLR |
- |
- |
- |
- |
96.68 ± 0.00 |
98.34 ± 0.00 |
99.00 ± 0.00 |
99.50 ± 0.00 |
PIDC |
- |
- |
- |
- |
76.51 ± 2.67 |
85.70 ± 3.99 |
91.80 ± 0.43 |
95.01 ± 0.70 |
Scribe |
- |
- |
- |
- |
51.56 ± 5.64 |
52.71 ± 4.98 |
57.68 ± 2.56 |
59.50 ± 0.83 |
dynGENIE3 |
- |
- |
- |
- |
92.81 ± 2.83 |
97.33 ± 1.01 |
97.87 ± 0.66 |
97.30 ± 1.26 |
XGBGRN |
- |
- |
- |
- |
97.99 ± 0.49 |
98.54 ± 0.38 |
99.21 ± 0.12 |
99.59 ± 0.02 |
NRI |
94.58 ± 0.01 |
95.12 ± 0.01 |
94.65 ± 0.02 |
89.17 ± 0.02 |
90.31 ± 0.01 |
74.64 ± 0.04 |
69.78 ± 0.03 |
68.80 ± 0.02 |
ACD |
94.34 ± 0.01 |
93.73 ± 0.01 |
87.54 ± 0.03 |
90.49 ± 0.03 |
80.32 ± 0.02 |
65.36 ± 0.06 |
69.01 ± 0.03 |
68.72 ± 0.03 |
MPM |
96.56 ± 0.01 |
89.71 ± 0.04 |
85.07 ± 0.02 |
84.56 ± 0.03 |
91.18 ± 0.01 |
83.37 ± 0.03 |
72.66 ± 0.04 |
70.34 ± 0.03 |
iSIDG |
96.59 ± 0.02 |
95.66 ± 0.01 |
95.72 ± 0.02 |
85.07 ± 0.02 |
91.20 ± 0.02 |
78.08 ± 0.06 |
73.68 ± 0.02 |
68.81 ± 0.02 |
RCSI |
97.03 ± 0.01 |
95.31 ± 0.01 |
94.48 ± 0.02 |
90.72 ± 0.03 |
91.53 ± 0.02 |
82.27 ± 0.04 |
74.08 ± 0.02 |
70.29 ± 0.03 |
Benchmarking on EMT Dataset
The results shown in the table are the average AUROC values of 10 runs on the EMT trajectories.
AUROC values (in %) of investigated structural inference methods on EMT dataset.
Method |
AUROC |
ppcor |
55.31 ± 0.00 |
TIGRESS |
56.32 ± 0.28 |
ARACNe |
57.22 ± 0.00 |
CLR |
51.41 ± 0.00 |
PIDC |
54.53 ± 0.00 |
Scribe |
54.82 ± 0.00 |
dynGENIE3 |
44.42 ± 0.05 |
XGBGRN |
55.63 ± 0.74 |
NRI |
52.09 ± 0.06 |
ACD |
51.14 ± 0.03 |
MPM |
52.43 ± 0.07 |
iSIDG |
52.58 ± 0.06 |
RCSI |
53.02 ± 0.07 |
Benchmarking on Trajectories with Noise
The results shown in the tables are the average AUROC values of 10 runs on the trajectories generated by a BN trajectories with a certain level of noise. The column headers represent the level of noise, e.g., “N1” denotes the trajectories have one level of added Gaussian noise.
a) AUROC values (in %) of investigated structural inference methods on BN trajectories with 1 (N1) and 2 (N2) levels of Gaussian noise.
Method |
N1 |
N2 |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
92.66 ± 0.80 |
97.16 ± 0.59 |
98.48 ± 0.19 |
99.30 ± 0.02 |
91.25 ± 0.75 |
96.68 ± 0.64 |
98.28 ± 0.22 |
99.21 ± 0.03 |
TIGRESS |
93.08 ± 0.76 |
96.42 ± 0.67 |
97.59 ± 0.23 |
98.65 ± 0.05 |
93.12 ± 0.80 |
96.43 ± 0.62 |
97.55 ± 0.24 |
98.59 ± 0.05 |
ARACNe |
84.73 ± 1.20 |
91.90 ± 1.00 |
95.84 ± 0.33 |
98.11 ± 0.11 |
84.39 ± 1.04 |
92.37 ± 0.98 |
95.73 ± 0.34 |
97.76 ± 0.13 |
CLR |
91.46 ± 0.45 |
96.48 ± 0.64 |
97.97 ± 0.24 |
98.97 ± 0.03 |
90.88 ± 0.73 |
96.55 ± 0.67 |
98.12 ± 0.20 |
99.04 ± 0.03 |
PIDC |
87.87 ± 0.64 |
94.54 ± 0.41 |
95.84 ± 0.10 |
96.77 ± 0.08 |
88.58 ± 0.66 |
95.02 ± 0.75 |
96.78 ± 0.19 |
97.56 ± 0.06 |
Scribe |
47.75 ± 6.78 |
63.04 ± 2.33 |
73.37 ± 1.11 |
70.95 ± 1.87 |
46.19 ± 5.58 |
63.42 ± 4.19 |
72.37 ± 1.98 |
71.36 ± 1.12 |
dynGENIE3 |
83.60 ± 3.35 |
90.28 ± 1.63 |
92.28 ± 2.10 |
98.00 ± 0.45 |
76.46 ± 0.64 |
88.32 ± 3.03 |
90.96 ± 1.39 |
97.93 ± 0.04 |
XGBGRN |
93.72 ± 1.08 |
98.35 ± 0.21 |
98.63 ± 0.18 |
99.40 ± 0.01 |
86.78 ± 2.19 |
96.92 ± 1.00 |
97.94 ± 0.28 |
99.07 ± 0.05 |
NRI |
72.98 ± 0.01 |
73.85 ± 0.02 |
74.12 ± 0.02 |
74.70 ± 0.02 |
56.76 ± 0.02 |
59.64 ± 0.03 |
62.52 ± 0.03 |
63.52 ± 0.02 |
ACD |
65.62 ± 0.02 |
63.47 ± 0.01 |
66.69 ± 0.02 |
61.56 ± 0.03 |
62.08 ± 0.02 |
58.14 ± 0.03 |
61.73 ± 0.02 |
59.04 ± 0.02 |
MPM |
70.23 ± 0.02 |
74.37 ± 0.02 |
75.72 ± 0.03 |
75.60 ± 0.03 |
62.83 ± 0.02 |
65.22 ± 0.02 |
66.52 ± 0.02 |
66.88 ± 0.03 |
iSIDG |
74.33 ± 0.03 |
76.06 ± 0.02 |
76.29 ± 0.01 |
76.54 ± 0.03 |
63.40 ± 0.04 |
66.44 ± 0.03 |
67.52 ± 0.03 |
68.75 ± 0.02 |
RCSI |
73.09 ± 0.03 |
74.50 ± 0.03 |
76.83 ± 0.02 |
76.01 ± 0.02 |
63.90 ± 0.02 |
64.72 ± 0.02 |
65.31 ± 0.03 |
66.62 ± 0.02 |
b) AUROC values (in %) of investigated structural inference methods on BN trajectories with 3 (N3) and 4 (N4) levels of Gaussian noise.
Method |
N3 |
N4 |
|
n15 |
n30 |
n50 |
n100 |
n15 |
n30 |
n50 |
n100 |
ppcor |
90.87 ± 0.66 |
96.36 ± 0.62 |
98.16 ± 0.19 |
99.15 ± 0.04 |
90.81 ± 0.67 |
96.10 ± 0.65 |
98.09 ± 0.19 |
99.09 ± 0.04 |
TIGRESS |
93.11 ± 0.65 |
96.45 ± 0.62 |
97.59 ± 0.21 |
98.56 ± 0.05 |
93.00 ± 0.38 |
96.44 ± 0.60 |
97.64 ± 0.22 |
98.57 ± 0.05 |
ARACNe |
88.04 ± 1.01 |
93.42 ± 0.85 |
96.02 ± 0.34 |
97.80 ± 0.11 |
89.51 ± 0.73 |
93.89 ± 0.79 |
96.22 ± 0.35 |
97.85 ± 0.12 |
CLR |
91.22 ± 0.82 |
96.57 ± 0.70 |
98.20 ± 0.20 |
99.07 ± 0.03 |
91.40 ± 0.86 |
96.63 ± 0.71 |
98.26 ± 0.20 |
99.09 ± 0.03 |
PIDC |
90.24 ± 0.56 |
95.17 ± 0.75 |
96.93 ± 0.23 |
97.98 ± 0.04 |
91.53 ± 1.11 |
95.17 ± 0.84 |
97.03 ± 0.28 |
98.12 ± 0.04 |
Scribe |
51.12 ± 2.82 |
61.51 ± 3.27 |
71.40 ± 3.26 |
72.10 ± 0.97 |
48.14 ± 2.15 |
60.82 ± 2.68 |
67.96 ± 2.52 |
70.71 ± 1.81 |
dynGENIE3 |
63.28 ± 2.16 |
80.56 ± 2.28 |
87.03 ± 2.73 |
98.04 ± 0.03 |
52.46 ± 0.55 |
73.68 ± 1.60 |
81.89 ± 4.03 |
97.77 ± 0.01 |
XGBGRN |
86.90 ± 1.19 |
96.38 ± 1.00 |
97.55 ± 0.32 |
98.88 ± 0.06 |
85.29 ± 0.62 |
95.74 ± 1.21 |
97.37 ± 0.31 |
98.75 ± 0.07 |
NRI |
50.67 ± 0.02 |
51.68 ± 0.01 |
54.40 ± 0.02 |
58.16 ± 0.02 |
50.91 ± 0.03 |
51.11 ± 0.02 |
51.24 ± 0.02 |
52.89 ± 0.03 |
ACD |
50.09 ± 0.03 |
54.38 ± 0.02 |
56.42 ± 0.01 |
56.12 ± 0.02 |
51.89 ± 0.02 |
54.65 ± 0.02 |
55.73 ± 0.03 |
55.02 ± 0.03 |
MPM |
55.29 ± 0.03 |
56.81 ± 0.03 |
57.41 ± 0.02 |
59.23 ± 0.02 |
55.85 ± 0.03 |
57.48 ± 0.01 |
59.76 ± 0.02 |
59.90 ± 0.02 |
iSIDG |
56.73 ± 0.02 |
56.79 ± 0.02 |
57.71 ± 0.01 |
60.60 ± 0.03 |
54.59 ± 0.04 |
57.82 ± 0.03 |
58.08 ± 0.02 |
59.70 ± 0.02 |
RCSI |
54.20 ± 0.02 |
54.72 ± 0.02 |
56.44 ± 0.02 |
59.43 ± 0.03 |
52.47 ± 0.03 |
53.02 ± 0.03 |
59.50 ± 0.02 |
58.34 ± 0.03 |
c) AUROC values (in %) of investigated structural inference methods on BN trajectories with 5 level of Gaussian noise.
Method |
N5 |
|
n15 |
n30 |
n50 |
n100 |
ppcor |
91.11 ± 0.69 |
95.81 ± 0.61 |
97.97 ± 0.18 |
99.04 ± 0.05 |
TIGRESS |
92.95 ± 0.42 |
96.38 ± 0.64 |
97.66 ± 0.18 |
98.57 ± 0.05 |
ARACNe |
90.22 ± 0.96 |
94.15 ± 0.70 |
96.33 ± 0.35 |
97.90 ± 0.11 |
CLR |
91.59 ± 0.90 |
96.65 ± 0.70 |
98.31 ± 0.20 |
99.10 ± 0.04 |
PIDC |
91.18 ± 1.61 |
95.11 ± 0.95 |
96.90 ± 0.32 |
98.17 ± 0.03 |
Scribe |
52.20 ± 6.61 |
58.31 ± 2.98 |
66.41 ± 2.87 |
69.35 ± 1.47 |
dynGENIE3 |
47.84 ± 1.10 |
67.07 ± 2.68 |
74.14 ± 4.26 |
97.46 ± 0.03 |
XGBGRN |
85.18 ± 0.34 |
95.41 ± 1.22 |
97.27 ± 0.28 |
98.70 ± 0.08 |
NRI |
46.68 ± 0.03 |
46.70 ± 0.02 |
49.57 ± 0.03 |
49.79 ± 0.03 |
ACD |
46.21 ± 0.03 |
46.34 ± 0.05 |
44.06 ± 0.02 |
44.41 ± 0.02 |
MPM |
55.39 ± 0.05 |
58.87 ± 0.02 |
59.07 ± 0.03 |
60.45 ± 0.03 |
iSIDG |
55.59 ± 0.03 |
58.82 ± 0.03 |
59.08 ± 0.01 |
60.70 ± 0.02 |
RCSI |
52.00 ± 0.04 |
55.31 ± 0.02 |
57.43 ± 0.02 |
58.10 ± 0.03 |
Benchmarking over Data-Efficiency